Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
NMR Biomed ; 36(5): e4694, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35032074

RESUMEN

BACKGROUND: The dual upregulation of TOP2A and EZH2 gene expression has been proposed as a biomarker for recurrence in prostate cancer patients to be treated with radical prostatectomy. A low tissue level of the metabolite citrate has additionally been connected to aggressive disease and recurrence in this patient group. However, for radiotherapy prostate cancer patients, few prognostic biomarkers have been suggested. The main aim of this study was to use an integrated tissue analysis to evaluate metabolites and expression of TOP2A and EZH2 as predictors for recurrence among radiotherapy patients. METHODS: From 90 prostate cancer patients (56 received neoadjuvant hormonal treatment), 172 transrectal ultrasound-guided (TRUS) biopsies were collected prior to radiotherapy. Metabolic profiles were acquired from fresh frozen TRUS biopsies using high resolution-magic angle spinning MRS. Histopathology and immunohistochemistry staining for TOP2A and EZH2 were performed on TRUS biopsies containing cancer cells (n = 65) from 46 patients, where 24 of these patients (n = 31 samples) received hormonal treatment. Eleven radical prostatectomy cohorts of a total of 2059 patients were used for validation in a meta-analysis. RESULTS: Among radiotherapy patients with up to 11 years of follow-up, a low level of citrate was found to predict recurrence, p = 0.001 (C-index = 0.74). Citrate had a higher predictive ability compared with individual clinical variables, highlighting its strength as a potential biomarker for recurrence. The dual upregulation of TOP2A and EZH2 was suggested as a biomarker for recurrence, particularly for patients not receiving neoadjuvant hormonal treatment, p = 0.001 (C-index = 0.84). While citrate was a statistically significant biomarker independent of hormonal treatment status, the current study indicated a potential of glutamine, glutamate and choline as biomarkers for recurrence among patients receiving neoadjuvant hormonal treatment, and glucose among patients not receiving neoadjuvant hormonal treatment. CONCLUSION: Using an integrated approach, our study shows the potential of citrate and the dual upregulation of TOP2A and EZH2 as biomarkers for recurrence among radiotherapy patients.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Próstata/patología , Prostatectomía , Citratos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo
2.
Commun Biol ; 5(1): 591, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710628

RESUMEN

Iron is essential for many biological processes, but iron levels must be tightly regulated to avoid harmful effects of both iron deficiency and overload. Here, we perform genome-wide association studies on four iron-related biomarkers (serum iron, serum ferritin, transferrin saturation, total iron-binding capacity) in the Trøndelag Health Study (HUNT), the Michigan Genomics Initiative (MGI), and the SardiNIA study, followed by their meta-analysis with publicly available summary statistics, analyzing up to 257,953 individuals. We identify 123 genetic loci associated with iron traits. Among 19 novel protein-altering variants, we observe a rare missense variant (rs367731784) in HUNT, which suggests a role for DNAJC13 in transferrin recycling. We further validate recently published results using genetic risk scores for each biomarker in HUNT (6% variance in serum iron explained) and present linear and non-linear Mendelian randomization analyses of the traits on all-cause mortality. We find evidence of a harmful effect of increased serum iron and transferrin saturation in linear analyses that estimate population-averaged effects. However, there was weak evidence of a protective effect of increasing serum iron at the very low end of its distribution. Our findings contribute to our understanding of the genes affecting iron status and its consequences on human health.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hierro , Biomarcadores , Ferritinas/genética , Humanos , Hierro/metabolismo , Polimorfismo de Nucleótido Simple , Transferrina/genética
3.
Sci Total Environ ; 806(Pt 4): 150875, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634345

RESUMEN

BACKGROUND: Biomonitoring of a cohort within a large health survey can provide reliable information on trace element status. The main aims of this study were 1) to determine the concentrations of 28 trace elements in whole blood samples from the general population of the Nord-Trøndelag region, Norway, and 2) to investigate how trace element concentrations vary with geographical area, lifestyle, and socio-demographic factors. METHODS: Whole blood samples were collected in the third survey of the Trøndelag Health Survey (HUNT3), a large population-based study in Norway. In total, 1011 whole blood samples from individuals aged 20-91 years were analyzed using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). We compared trace element concentrations (As, B, Be, Br, Ca, Cd, Cr, Cs, Cu, Ga, Au, In, Fe, Pb, Hg, Tl, Mg, Mn, Mo, Ni, Rb, Sc, Se, Ag, Sr, Sn, W and Zn) between three geographical areas (coastal, fjord/town, inland/mountain) using multivariable linear regression and assessed differences in trace element concentrations with socio-demographic and lifestyle factors using general linear models. RESULTS: Trace element concentrations were generally comparable to levels reported in other recent studies and suggest low exposure to toxic trace elements in the region. We found geographical differences in concentrations of 19 trace elements. As, Br, Hg, and Se concentrations were higher on the coast compared to the fjord/town and inland/mountain areas, suggesting that the marine environment is an important source of exposure for these trace elements. In addition, socio-demographic and lifestyle characteristics, particularly age and sex, were associated with differences in trace element concentrations. CONCLUSIONS: We report concentrations of 28 trace elements in the general population of a rural region with low exposure to pollution. Whole blood concentrations of trace elements varied with geographical area, the participants' lifestyle, and socio-demographic characteristics, highlighting the importance of considering these factors when evaluating trace element status in a population.


Asunto(s)
Mercurio , Oligoelementos , Humanos , Modelos Lineales , Análisis Espectral , Encuestas y Cuestionarios , Oligoelementos/análisis
4.
Hum Mol Genet ; 30(21): 2027-2039, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33961016

RESUMEN

Circulating cardiac troponin proteins are associated with structural heart disease and predict incident cardiovascular disease in the general population. However, the genetic contribution to cardiac troponin I (cTnI) concentrations and its causal effect on cardiovascular phenotypes are unclear. We combine data from two large population-based studies, the Trøndelag Health Study and the Generation Scotland Scottish Family Health Study, and perform a genome-wide association study of high-sensitivity cTnI concentrations with 48 115 individuals. We further use two-sample Mendelian randomization to investigate the causal effects of circulating cTnI on acute myocardial infarction (AMI) and heart failure (HF). We identified 12 genetic loci (8 novel) associated with cTnI concentrations. Associated protein-altering variants highlighted putative functional genes: CAND2, HABP2, ANO5, APOH, FHOD3, TNFAIP2, KLKB1 and LMAN1. Phenome-wide association tests in 1688 phecodes and 83 continuous traits in UK Biobank showed associations between a genetic risk score for cTnI and cardiac arrhythmias, metabolic and anthropometric measures. Using two-sample Mendelian randomization, we confirmed the non-causal role of cTnI in AMI (5948 cases, 355 246 controls). We found indications for a causal role of cTnI in HF (47 309 cases and 930 014 controls), but this was not supported by secondary analyses using left ventricular mass as outcome (18 257 individuals). Our findings clarify the biology underlying the heritable contribution to circulating cTnI and support cTnI as a non-causal biomarker for AMI in the general population. Using genetically informed methods for causal inference helps inform the role and value of measuring cTnI in the general population.


Asunto(s)
Biomarcadores , Genética de Población , Estudio de Asociación del Genoma Completo , Troponina I/genética , Alelos , Mapeo Cromosómico , Expresión Génica , Variación Genética , Análisis de la Aleatorización Mendeliana , Especificidad de Órganos , Sitios de Carácter Cuantitativo , Troponina T/genética
5.
J Trace Elem Med Biol ; 41: 91-98, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28347468

RESUMEN

Several epidemiological studies have indicated that a number of trace elements may play a role in type 2 diabetes (T2D). We investigated the association between prevalent T2D and the concentrations of 25 trace elements in whole blood, and the relationships between T2D duration and blood levels of the trace elements that we found to be related to T2D prevalence. In this population based case-control study, 267 patients with self-reported T2D and 609 controls (frequency matched), were selected from the third Nord-Trøndelag Health Survey. Trace element blood levels were determined by high resolution inductively coupled plasma-mass spectrometry. Multivariable conditional logistic regression and multivariable linear regression were used to estimate associations. The prevalence of T2D was positively associated with boron, calcium and silver, and inversely associated with indium, lead and magnesium (Ptrend<0.05). We found no statistical evidence for associations between blood levels of arsenic, bromine, cadmium, cesium, chromium, copper, gallium, gold, manganese, mercury, molybdenum, nickel, rubidium, selenium, strontium, tantalum, thallium, tin and zinc and T2D prevalence. After corrections for multiple testing, associations remained significant for calcium and lead (Qtrend<0.05), and borderline significant for magnesium, silver and boron. With increasing disease duration, higher calcium levels were observed (P<0.05). This study suggests an association between prevalent T2D and blood levels of boron, calcium, indium, lead, magnesium and silver.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Encuestas Epidemiológicas , Oligoelementos/sangre , Anciano , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Noruega/epidemiología
6.
J Trace Elem Med Biol ; 40: 46-53, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28159221

RESUMEN

Differences in trace elements levels between individuals with type 2 diabetes and controls have been reported in several studies in various body fluids and tissues, but results have been inconsistent. In order to examine trace element levels in the early phase of type 2 diabetes, we investigated the association between whole blood levels of 26 trace elements and the prevalence of previously undiagnosed, screening-detected type 2 diabetes. The study was conducted as a case-control study nested within the third survey of the population-based Nord-Trøndelag Health Study (HUNT3 Survey). Among participants without previously known diabetes, 128 cases of type 2 diabetes were diagnosed in people with a high diabetes risk score (FINDRISC≥15), and frequency-matched for age and sex with 755 controls. Blood samples were analyzed by high resolution inductively coupled plasma mass spectrometry. Associations between trace element levels and the prevalence of previously undiagnosed type 2 diabetes were evaluated with multivariable conditional logistic regression controlling for age, sex, body mass index, waist-to-hip ratio, education, income, smoking and family history of diabetes. The prevalence of previously undiagnosed type 2 diabetes increased across tertiles/quartiles for cadmium, chromium, iron, nickel, silver and zinc, and decreased with increasing quartiles of bromine (Ptrend<0.05). After corrections for multiple testing, associations for chromium remained significant (Qtrend<0.05), while associations for iron and silver were borderline significant. No associations were found for arsenic, boron, calcium, cesium, copper, gallium, gold, indium, lead, magnesium, manganese, mercury, molybdenum, rubidium, selenium, strontium, tantalum, thallium and tin. Our results suggest a possible role of bromine, cadmium, chromium, iron, nickel, silver and zinc in the development of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Oligoelementos/sangre , Anciano , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Noruega/epidemiología
7.
Oncotarget ; 8(6): 9572-9586, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28030815

RESUMEN

Activation of the Canonical Wnt pathway (CWP) has been linked to advanced and metastatic prostate cancer, whereas the Wnt5a-induced non-canonical Wnt pathway (NCWP) has been associated with both good and poor prognosis. A newly discovered NCWP, Wnt5/Fzd2, has been shown to induce epithelial-to-mesenchymal transition (EMT) in cancers, but has not been investigated in prostate cancer. The aim of this study was to investigate if the CWP and NCWP, in combination with EMT, are associated with metabolic alterations, aggressive disease and biochemical recurrence in prostate cancer. An initial analysis was performed using integrated transcriptomics, ex vivo and in vivo metabolomics, and histopathology of prostatectomy samples (n=129), combined with at least five-year follow-up. This analysis detected increased activation of NCWP through Wnt5a/ Fzd2 as the most common mode of Wnt activation in prostate cancer. This activation was associated with increased expression of EMT markers and higher Gleason score. The transcriptional association between NCWP and EMT was confirmed in five other publicly available patient cohorts (1519 samples in total). A novel gene expression signature of concordant activation of NCWP and EMT (NCWP-EMT) was developed, and this signature was significantly associated with metastasis and shown to be a significant predictor of biochemical recurrence. The NCWP-EMT signature was also associated with decreased concentrations of the metabolites citrate and spermine, which have previously been linked to aggressive prostate cancer. Our results demonstrate the importance of NCWP and EMT in prostate cancer aggressiveness, suggest a novel gene signature for improved risk stratification, and give new molecular insight.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Próstata/genética , Transcriptoma , Proteínas Wnt/genética , Vía de Señalización Wnt/genética , Anciano , Biomarcadores de Tumor/metabolismo , Supervivencia sin Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Estimación de Kaplan-Meier , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Clasificación del Tumor , Fenotipo , Modelos de Riesgos Proporcionales , Prostatectomía , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Proteínas Wnt/metabolismo
8.
Oncotarget ; 7(27): 42071-42085, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27276682

RESUMEN

TMPRSS2-ERG has been proposed to be a prognostic marker for prostate cancer. The aim of this study was to identify changes in metabolism, genes and biochemical recurrence related to TMPRSS2-ERG by using an integrated approach, combining metabolomics, transcriptomics, histopathology and clinical data in a cohort of 129 human prostate samples (41 patients). Metabolic analyses revealed lower concentrations of citrate and spermine comparing ERGhigh to ERGlow samples, suggesting an increased cancer aggressiveness of ERGhigh compared to ERGlow. These results could be validated in a separate cohort, consisting of 40 samples (40 patients), and magnetic resonance spectroscopy imaging (MRSI) indicated an in vivo translational potential. Alterations of gene expression levels associated with key enzymes in the metabolism of citrate and polyamines were in consistence with the metabolic results. Furthermore, the metabolic alterations between ERGhigh and ERGlow were more pronounced in low Gleason samples than in high Gleason samples, suggesting it as a potential tool for risk stratification. However, no significant difference in biochemical recurrence was detected, although a trend towards significance was detected for low Gleason samples. Using an integrated approach, this study suggests TMPRSS2-ERG as a potential risk stratification tool for inclusion of active surveillance patients.


Asunto(s)
Metaboloma , Neoplasias de la Próstata/metabolismo , Serina Endopeptidasas/metabolismo , Biomarcadores de Tumor/metabolismo , Citratos/química , Estudios de Cohortes , Ácidos Grasos/química , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Espectroscopía de Resonancia Magnética , Masculino , Análisis Multivariante , Recurrencia Local de Neoplasia , Pronóstico , Modelos de Riesgos Proporcionales , Próstata/metabolismo , Análisis de Regresión , Espermina/química , Regulador Transcripcional ERG/metabolismo
9.
Br J Cancer ; 113(12): 1712-9, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26633561

RESUMEN

BACKGROUND: An individualised risk-stratified screening for prostate cancer (PCa) would select the patients who will benefit from further investigations as well as therapy. Current detection methods suffer from low sensitivity and specificity, especially for separating PCa from benign prostatic conditions. We have investigated the use of metabolomics analyses of blood samples for separating PCa patients and controls with benign prostatic hyperplasia (BPH). METHODS: Blood plasma and serum samples from 29 PCa patient and 21 controls with BPH were analysed by metabolomics analysis using magnetic resonance spectroscopy, mass spectrometry and gas chromatography. Differences in blood metabolic patterns were examined by multivariate and univariate statistics. RESULTS: By combining results from different methodological platforms, PCa patients and controls were separated with a sensitivity and specificity of 81.5% and 75.2%, respectively. CONCLUSIONS: The combined analysis of serum and plasma samples by different metabolomics measurement techniques gave successful discrimination of PCa and controls, and provided metabolic markers and insight into the processes characteristic of PCa. Our results suggest changes in fatty acid (acylcarnitines), choline (glycerophospholipids) and amino acid metabolism (arginine) as markers for PCa compared with BPH.


Asunto(s)
Biomarcadores de Tumor/sangre , Hiperplasia Prostática/sangre , Neoplasias de la Próstata/sangre , Anciano , Estudios de Casos y Controles , Diagnóstico Diferencial , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Hiperplasia Prostática/diagnóstico , Neoplasias de la Próstata/diagnóstico , Curva ROC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...